精英家教网 > 高中数学 > 题目详情

【题目】把函数 的图象上每个点的横坐标扩大到原来的4倍,再向左平移 ,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为(
A.
B.
C.
D.

【答案】B
【解析】解:把函数 的图象上每个点的横坐标扩大到原来的4倍,可得y= sin( x﹣ )的图象, 再向左平移 ,得到函数g(x)= sin[ (x+ )﹣ ]= sin( x﹣ )的图象,
令2kπ+ x﹣ ≤2kπ+ ,求得4kπ+ ≤x≤4kπ+
故函数g(x)的单调递减区间为[4kπ+ ,4kπ+ ],k∈Z,
令k=0,可得函数g(x)的一个单调递减区间为[ ],
故选:B.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及数列{an}的通项公式;
(2)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :直线 与直线 之间的距离不大于1,命题 :椭圆 与双曲线 有相同的焦点,则下列命题为真命题的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式

(2)设数列的前项和为证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中, 平面 分别在线段 上, 的中点.

(1)证明: 平面
(2)若二面角 的大小为 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中有5个同样大小的球,编号为3,4,5,6,7,从中同时取出3个小球,以ξ表示取出的球的最小号码,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足 ,且 .
(1)写出 的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和与标号之积都不小于5的概率.

查看答案和解析>>

同步练习册答案