精英家教网 > 高中数学 > 题目详情
16.双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.与m有关

分析 首先判断双曲线的焦点在x轴上,求出a2,b2,由c2=a2+b2,计算可得c,即可得到焦距2c.

解答 解:双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1焦点在x轴上,
即有4-m2>0,
则a2=m2+12,b2=4-m2
c2=a2+b2=16,
则c=4,焦距2c=8.
故选C.

点评 本题考查双曲线的方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=4x的准线与双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}=1$相交于A,B两点,F为抛物线的焦点,∠FAB=45°,则双曲线的离心率为(  )
A.3B.2C.$\sqrt{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$sinα+sinβ=\frac{1}{3}$,求y=sinβ-cos2α的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanα=3,则$\frac{sinα-cosα}{2sinα+cosα}$的值为$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$.
(Ⅰ)求a2,a3,a4
(Ⅱ)求数列{an}的通项公式.
(Ⅲ)若数列bn=$\frac{{a}_{n}}{n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义在R上的偶函数,且x∈[0,+∞)时,f′(x)<0,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围是(  )
A.$[-\frac{23}{27},1]$B.$[\frac{23}{27},1]$C.[1,3]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l1:2x+4y-1=0,直线l2经过点(1,-2),求满足下列条件的直线l2的方程:
(1)l1∥l2;             (2)l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系中,有△ABC,且A(-3,0),B(3,0),顶点C到点A与点B的距离之差为4,则顶点C的轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1(x≥2).

查看答案和解析>>

同步练习册答案