精英家教网 > 高中数学 > 题目详情

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

【答案】C

【解析】

连接,可得三角形为等边三角形,过点PPHx轴于点H, 则∠=60,可得|=2c, , ||=, ||=,连接,利用双曲线的性质, 2a=||-||=-2c=,可得离心率e.

解:由题意得:

四边形的边长为2c, 连接,由对称性可知, ||=||=2c,则三角形为等边三角形.

过点PPHx轴于点H, 则∠=60

||=2c,在直角三角形, ||=, ||=,

P(2c,), 连接, ||=.

由双曲线的定义知,2a=||-||=-2c=,

所以双曲线的离心率为e===

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值,用样本估计总体.

(1)将直径小于等于或直径大于的零件认为是次品,从设备的生产流水线上随意抽取3个零件,计算其中次品个数的数学期望

(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数xR

1)判断函数的奇偶性,并说明理由;

2)利用函数单调性定义证明:上是增函数;

3)若对任意的xR,任意的 恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆的圆心为,半径为.以极点为原点,极轴方向为轴正半轴方向,利用相同单位长度建立平面直角坐标系,直线的参数方程为为参数,).

(Ⅰ)写出圆的极坐标方程和直线的普通方程;

(Ⅱ)若直线与圆交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象,只要将函数的图象( )

A.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

B.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

C.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

D.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面,且,点为线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:

(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线为参数,).

(Ⅰ)求直线的普通方程;

(Ⅱ)在曲线上求一点,使它到直线的距离最短,并求出点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知T是由A的子集组成的集合,满足性质:空集和属于,且任意两个元素的交和并也属于T

(1)当T的元素个数为2时,请写出所有符合条件的T.

(2)当T的元素个数为3时,请写出所有符合条件的T.

(3)求所有符合条件的T的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

同步练习册答案