【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的最小值.
【答案】(1)x2+(y-3)2=9.(2)
【解析】试题分析:(1)根据 将圆的极坐标方程转化为直角坐标方程(2)由直线参数方程得,所以将直线参数方程代入圆直角坐标方程得t2+2(cosα-sinα)t-7=0,利用韦达定理化简得,最后根据三角函数有界性求最小值.
试题解析:(1)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.
(2)将的参数方程代入圆C的直角坐标方程,得t2+2(cosα-sinα)t-7=0.
由△=4(cosα-sinα)2+4×7>0,故可设t1,t2是上述方程的两根,
所以
又由直线过点(1,2),故,结合参数的几何意义得
,当时取等.
所以|PA|+|PB|的最小值为.
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会的分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为A1 , A2 , A3 , 乙协会编号为A4 , 丙协会编号分别为A5 , A6 , 若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 对任意的正整数n,都有an=5Sn+1成立,记bn= (n∈N*).
(1)求数列{an}和数列{bn}的通项公式;
(2)设数列{bn}的前n项和为Rn , 求证:对任意的n∈N* , 都有Rn<4n;
(3)记cn=b2n﹣b2n﹣1(n∈N*),设数列{cn}的前n项和为Tn , 求证:对任意n∈N* , 都有Tn< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD﹣A1B1C1D1中,M,N分别为棱AB,DD1的中点,异面直线A1M和C1N所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为2,△BCD为正三角形,现将△BCD沿BD向上折起,折起后的点C记为C′,且CC′= ,连接CC′,E为CC′的中点.
文科:
(1)求证:AC′∥平面BDE;
(2)求证:CC′⊥平面BDE;
(3)求三棱锥C′﹣BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, ),(),且在点处的切线方程为.
(Ⅰ)求, 的值;
(Ⅱ)若函数在区间内有且仅有一个极值点,求的取值范围;
(Ⅲ)设()为两曲线(),的交点,且两曲线在交点处的切线分别为, .若取,试判断当直线, 与轴围成等腰三角形时值的个数并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com