精英家教网 > 高中数学 > 题目详情
16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=$\frac{1}{2}$,点P为椭圆上的一个动点,△PF1F2面积的最大值为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)经过F2的直线m与曲线C交于P、Q两点,若|PQ|2=|F1P|2+|F1Q|2,求直线m的方程.

分析 (1)由题意可得:$\frac{c}{a}$=$\frac{1}{2}$,$\frac{1}{2}×2c×b$=4$\sqrt{3}$,a2=b2+c2,解出即可得出.
(2)由题意可设直线m的方程为:ty=x-2.P(x1,y1),Q(x2,y2).直线方程与椭圆方程联立化为:(3t2+4)y2+12ty-36=0,由|PQ|2=|F1P|2+|F1Q|2,可得F1Q⊥F2Q.${k}_{{F}_{1}Q}$$•{k}_{{F}_{2}Q}$=$\frac{{y}_{2}}{{x}_{2}+2}$$•\frac{{y}_{1}}{{x}_{1}+2}$=-1,即(1+t2)y1•y2+4t(y1+y2)+16=0.利用根与系数的关系代入即可得出.

解答 解:(1)由题意可得:$\frac{c}{a}$=$\frac{1}{2}$,$\frac{1}{2}×2c×b$=4$\sqrt{3}$,a2=b2+c2
解得c=2,a=4,b2=12.
∴椭圆C的方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
(2)由题意可设直线m的方程为:ty=x-2.P(x1,y1),Q(x2,y2).
联立$\left\{\begin{array}{l}{ty=x-2}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,化为:(3t2+4)y2+12ty-36=0,
∴y1•y2=$\frac{-36}{3{t}^{2}+4}$,y1+y2=$\frac{-12t}{3{t}^{2}+4}$.
∵|PQ|2=|F1P|2+|F1Q|2
∴F1Q⊥F2Q.
∴${k}_{{F}_{1}Q}$$•{k}_{{F}_{2}Q}$=$\frac{{y}_{2}}{{x}_{2}+2}$$•\frac{{y}_{1}}{{x}_{1}+2}$=-1,
∴y1•y2+(x1+2)(x2+2)=0,即y1•y2+(ty1+4)(ty2+4)=0,
∴(1+t2)y1•y2+4t(y1+y2)+16=0,
∴(1+t2)•$\frac{-36}{3{t}^{2}+4}$+4t×$\frac{-12t}{3{t}^{2}+4}$+16=0,
化为:9t2=7,解得t=$±\frac{\sqrt{7}}{3}$.
∴直线m的方程为:3x$±\sqrt{7}$y-6=0.

点评 本题考查了椭圆的标准方程及其性质、勾股定理的逆定理、直线垂直与斜率之间的关系、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知正三棱柱ABC-A1B1C的各条棱长都为a,P为A1B的中点,M为AB的中点,
(1)求证:AB⊥平面PMC;
(2)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P($\sqrt{2}$,1)和椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(1)设椭圆的两个焦点分别为F1,F2,试求△PF1F2的周长及椭圆的离心率;
(2)若直线l:$\sqrt{2}$x-2y+m=0(m≠0)与椭圆C交于两个不同的点A,B,设直线PA与PB的斜率分别为k1,k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.从1到9这9个数字中取出不同的5个数字进行排列,问:奇数的位置上是奇数的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(0,2),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,MK垂直准线于点K,若|KM|:|MN|=1:$\sqrt{5}$,则a的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x$-\frac{1}{2}$.
(1)求f(x)的最小值,并写出取得最小值时的自变量x的集合.
(2)设△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),的左右焦点,离心率为$\frac{\sqrt{2}}{2}$,M为椭圆上的动点,|MF1|的最大值为1$+\sqrt{2}$.
(Ⅰ)求椭圆C的方程.
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,求证:|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上单调递增,则$f({\frac{π}{16}})$的最大值为1.

查看答案和解析>>

同步练习册答案