精英家教网 > 高中数学 > 题目详情

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:

质量指标值m

25≤m35

15≤m2535≤m45

0m1545≤m65

等级

一等品

二等品

三等品

某企业从生产的这种产品中抽取100件产品作为样本,检测其质量指标值,得到下图的率分布直方图.(同一组数据用该区间的中点值作代表)

1)该企业为提高产品质量,开展了质量提升月活动,活动后再抽样检测,产品三等品数Y近似满足YH1015100),请测算质量提升月活动后这种产品的二等品率(一、二等品其占全部产品百分比)较活动前提高多少个百分点?

2)若企业每件一等品售价180元,每件二等品售价150元,每件三等品售价120元,以样本中的频率代替相应概率,现有一名联客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列及数学期望.

【答案】15个百分点.(2)见解析,

【解析】

1)根据抽样调查数据,求得样本中一等品和二等品的件数,得到在样本中所占比例,再根据活动后产品三等品数Y近似满足YH1015100)得到一、二等品的合格率,两个比例比较即可.

2)根据样品估计总体,该企业随机抽取一件产品为一等品的概率为,二等品的概率为,三等品的概率为,再明确随机变量X的所有可能取值为240270300330360,分别求得相应概率,写出分布列再求期望.

1)根据抽样调查数据知,样本中一等品和二等品共有:(0.5+0.18+0.12×10080(件)

在样本中所占比例为80%

活动后产品三等品数Y近似满足YH1015100),

所以100件产品中三等品为15件,一、二等品数为1001585(件)合格率为85%

所以一、二等品率增加了5个百分点.

2)由样品估计总体知,该企业随机抽取一件产品为一等品的概率为,二等品的概率为,三等品的概率为

随机变量X的所有可能取值为240270300330360

所以X的分布列为:

X

240

270

300

330

360

PX

X的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于集合,定义.

集合中的元素个数记为,当,称集合具有性质.

1)已知集合,写出的值,并判断集合是否具有性质

2)设集合具有性质,判断集合中的三个元素是否能组成等差数列,请说明理由;

3)若数列是以为首项,2为公比的等比数列. 数列中的前100项:组成的集合记作,将集合中的所有元素从小到大排序,即满足,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,,现沿对角线折起,使点A到达点P,点MN分别在直线上,且ABMN四点共面.

1)求证:

2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足

1)求a1a2a3的值;

2)对任意正整数nan小数点后第一位数字是多少?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如城某观光区的平面示意图如图所示,其中矩形的长千米,宽千米,半圆的圆心中点.为了便于游客观光休闲,在观光区铺设一条由圆弧、线段组成的观光道路.其中线段经过圆心,且点在线段上(不含线段端点.已知道路的造价为元每千米,道路造价为元每千米,设,观光道路的总造价为.

1)试求的函数关系式:

2)当为何值时,观光道路的总造价最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.

1)求椭圆的方程;

2)设过点的动直线与椭圆相交于两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx2=2py经过点(21).

(Ⅰ)求抛物线C的方程及其准线方程;

(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点MN,直线y=1分别交直线OMON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.

查看答案和解析>>

同步练习册答案