精英家教网 > 高中数学 > 题目详情

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分),以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界线符合函数y=x+ (x>0)模型,园区服务中心P在x轴正半轴上,PO= 百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.

【答案】
(1)解:设M(x,x+ ),则|OM|2=x2+(x+ 2=2x2+ +2≥2 +2,

当且仅当2x2= 即x2= 时取等号,

∴|OM|的最短距离为


(2)解:过P作函数y=x+ 的切线l,设切线l的方程为y=k(x﹣ )(k<0),

联立方程组 ,得(1﹣k)x2+ x+1=0,

令△= k2﹣4(1﹣k)=0得k=﹣3或k= (舍),

∴直线l的方程为y=﹣3(x﹣ ),

令y=5得x=﹣

∴DQ=6﹣ =

∴当|DQ|= 时,通道PQ最短


【解析】(1)设M(x,x+ ),利用距离公式得出|OM|2关于x的函数,利用基本不等式求出最小值即可;(2)当直线PQ与湖边界相切时,通道最短,设出切线方程,与边界函数联立,令△=0即可得出切线方程,从而确定Q点的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个多面体的直观图、正视图、侧视图、俯视图如图,M,N分别为A1BB1C1的中点.

下列结论中正确的个数有 (  )

①直线MN与A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱锥N-A1BC的体积为=a3.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB和曲线DE分别是顶点在路面A、E的抛物线的一部分,曲线BCD是圆弧,已知它们在接点B、D处的切线相同,若桥的最高点C到水平面的距离H=6米,圆弧的弓高h=1米,圆弧所对的弦长BD=10米.
(1)求弧 所在圆的半径;
(2)求桥底AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M轴相切.

(1)的值;

(2)求圆M轴上截得的弦长;

(3)若点是直线上的动点,过点作直线与圆M相切,为切点,求四边形面积的最小值.

【答案】(1) (2) (3)

【解析】试题分析:(1)先将圆的一般方程化成标准方程,利用直线和圆相切进行求解;(2),得到关于的一元二次方程进行求解;(3)将四边形的面积的最小值问题转化为点到直线的的距离进行求解.

试题解析:(1)   ∵圆M轴相切  

   

(2) ,则  

 

(3)

 的最小值等于点到直线的距离, 

 

∴四边形面积的最小值为

型】解答
束】
20

【题目】在平面直角坐标系中,圆的方程为,且圆轴交于 两点,设直线的方程为

(1)当直线与圆相切时,求直线的方程;

(2)已知直线与圆相交于 两点.

(ⅰ)若,求实数的取值范围;

(ⅱ)直线与直线相交于点,直线,直线,直线的斜率分别为

是否存在常数,使得恒成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量m (sin ,1), =(1, cos ),函数f(x)=
(1)求函数f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(I)求 的单调区间;
(II)若对任意的 ,都有 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点 ,其离心率 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)设动直线 与椭圆 相切,切点为 ,且 与直线 相交于点
试问:在 轴上是否存在一定点,使得以 为直径的圆恒过该定点?若存在,
求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)当a=1时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(Ⅱ)讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案