精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,O是面对角线B1D1的中点.
(1)求证:AO∥平面BDC1
(2)求证:A1C⊥平面BDC1
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)如图所示,连接AC,BD交于G点,连接OC1,GC1,由OC1
.
AG,可得OA∥GC1,从而可证OA∥平面C1BD.
(2)连接AC,交BD于O,则BD⊥AC,结合A1A⊥BD,由线面垂直的判定定理得BD⊥平面A1AC,进而BD⊥A1C,连接C1O,可证得A1C⊥C1O,再利用线面垂直的判定定理即可得到A1C⊥平面C1BD;
解答: 证明:(1)如图所示,连接AC,BD交于G点,连接OC1,GC1
∴在正方体ABCD-A1B1C1D1中,OC1
.
AG,四边形OC1AG为平行四边形,
∴OA∥GC1
又GC1?平面C1BD,OA?平面C1BD,∴OA∥平面C1BD.…(2分)

(2)连接AC,交BD于O,则BD⊥AC.
又A1A⊥BD,∴BD⊥平面A1AC.
∵A1C?平面A1AC,BD⊥A1C.
连接C1O,在矩形A1C1CA中,设A1C交C1O于M.
A1A
AC
=
OC
CC1
,知∠ACA1=∠CC1O.
∴∠C1OC+A1CO=∠C1OC+∠CC1O=
π
2
,∴∠CMO=
π
2

∴A1C⊥C1O.
又CO∩BD=0,CO?平面C1BD,BD?平面C1BD,
∴A1C⊥平面C1BD.…(7分)
点评:直线与平面平行的判定,直线与平面垂直的判定,解题时要认真审题,注意空间思维能力的培养,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若变量想x,y满足约束条件
x≤0
y≥0
y-x≤2
,则z=x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲线上的点,则
2
a
+
9
b
最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=x2+2ax+2a+1.
(1)若对任意x∈R,有f(x)≥1恒成立,求实数a的取值范围;
(2)讨论函数f(x)在区间[0,1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系O-xyz中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz平面为投影面,则得到正视图可以为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDE中,AE⊥平面ABC,BD∥AE,△ABC是边长为2的正三角形,且BD=2,AE=1,F为CD中点.
(1)求证:EF∥平面ABC;
(2)求证:EF⊥平面BCD;
(3)求二面角C-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(3,1)作圆C:(x-2)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为(  )
A、x+y-3=0
B、x-y-3=0
C、2x-y-3=0
D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F、M分别是棱A1B1、AA1、B1C1的中点.
(1)求证:BF⊥平面ADE;
(2)是否存在过E、M两点且与平面BFD1平行的平面?若存在,请指出并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3-a)x,x∈(-∞,1]
ax,x∈(1,+∞)
是(-∞,+∞)上的增函数,那么实数a的取值范围是(  )
A、(0,3)
B、(1,3)
C、(1,+∞)
D、[
3
2
,3)

查看答案和解析>>

同步练习册答案