精英家教网 > 高中数学 > 题目详情

判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.

(1)不是(2)不是(3)符合(4)不是

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图已知中,,点是边上的动点,动点满足(点按逆时针方向排列).

(1)若,求的长;
(2)若,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使
(3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)试用函数单调性定义说明函数在区间上的增减性;
(3)若满足:,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且,
,时恒成立.
(1)判断上的单调性;
(2)解不等式
(3)若对于所有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列函数的奇偶性:
(1)f(x)=x3
(2)f(x)=
(3)f(x)=(x-1)
(4)f(x)=.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数是偶函数,且时,
(1)当时,求解析式;
(2)当,求取值的集合;
(3)当,函数的值域为,求满足的条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.

查看答案和解析>>

同步练习册答案