精英家教网 > 高中数学 > 题目详情
如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。
(1)见解析(2) 见解析(3)
本试题主要是考查了线面垂直和线面平行的判定定理的运用,以及二面角大小的求解的综合运用。
(1)yw由于所以
,则是解题的关键
(2) 取的中点,连结
由条件知
∴四边形为平行四边形,
,∴
∴四边形为平行四边形,∴
然后得到结论。
(2)建立空间直角坐标系,然求解平面的法向量的坐标,结合向量的数量积的性质得到夹角的值。
证明:(Ⅰ)由于所以
,则
所以,则
(Ⅱ)取的中点,连结
由条件知
∴四边形为平行四边形,
,∴
∴四边形为平行四边形,∴
∴平面平面,则平面
(Ⅲ)由(Ⅰ)知两两垂直,如图建系,

,则


设平面的法向量为,则由,得,取,则
而平面的法向量为,则
所以二面角为钝二面角,故二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在中,为△ABC所在平面外一点,PA⊥面ABC,则四面体P-ABC中共有直角三角形个数为
A.4B.3 C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于直线与平面,有以下四个命题:
① 若,则
② 若,则
③若,则
④ 若,则
其中正确命题的序号是        .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.正方体ABCD-A1B1C1D1中,E、F分别AB、C1D1的中点,则A1B1与平面A1EF所成角的正切值为
A.2               B.             C.1                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线,平面,且,给出下列四个命题:
①若,则;②若,则
③若,则;④若,则
其中为真命题的序号是_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的直线,是不同的平面,若①,则其中能使的充分条件的个数为(    )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线l,m与平面α、β、γ满足β∩γ=l,,,那么必有(  )
A.m//β且l⊥mB.α//β且α⊥γ
C.α⊥β且m//γ   D.α⊥γ且l⊥m

查看答案和解析>>

同步练习册答案