精英家教网 > 高中数学 > 题目详情
(2013•永州一模)已知在平面直角坐标系xoy中,圆C的参数方程为
x=2cosα
y=1+2sinα
(α为参数),与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρsin(θ-
π
3
)=1
,则圆C截直线l所得的弦长为
4
4
分析:化圆的参数方程为直角坐标方程,化直线的极坐标方程为直角坐标方程,由圆心到直线的距离公式求出圆心到直线的距离,则圆C截直线l所得的弦长可求.
解答:解:由
x=2cosα
y=1+2sinα
,得
x=2cosα①
y-1=2sinα②

2+②2得x2+(y-1)2=4.
所以圆是以C(0,1)为圆心,以2为半径的圆.
又由2ρsin(θ-
π
3
)=1
,得2ρ(sinθcos
π
3
-cosθsin
π
3
)=1

ρsinθ-
3
ρcosθ=1

所以直线l的直角坐标方程为
3
x-y+1=0

所以圆心C到直线l的距离为d=
|
3
×0-1×1+1|
(
3
)2+(-1)2
=0

则直线l经过圆C的圆心,圆C截直线l所得的弦长为4.
故答案为4.
点评:本题考查了参数方程化普通方程,考查了极坐标化直角坐标,考查了直线与圆的位置关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•永州一模)已知函数f(x)=mlnx+
1
x
,(其中m为常数)
(1)试讨论f(x)在区间(0,+∞)上的单调性;
(2)令函数h(x)=f(x)+
1
m
lnx
-x.当m∈[2,+∞)时,曲线y=h(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得过P、Q点处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设集合A={x|-1<x<2},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步练习册答案