精英家教网 > 高中数学 > 题目详情
7.已知2sinα+cosα=0,则2cos2α-sin2α的值为(  )
A.$\frac{12}{5}$B.$\frac{5}{12}$C.$\frac{6}{5}$D.-2

分析 利用“1”的代换,化简所求的表达式,即可求出结果.

解答 解:2cos2α-sin2α=$\frac{{2cos}^{2}α-sin2α}{{sin}^{2}α+{cos}^{2}α}$=$\frac{{2cos}^{2}α-2sinαcosα}{{sin}^{2}α+{cos}^{2}α}$=$\frac{{8sin}^{2}α+4sinαsinα}{{sin}^{2}α+4{sin}^{2}α}$=$\frac{12}{5}$.
故选:A.

点评 本题考查二倍角公式以及同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是(  )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=3cos($\frac{π}{2}$-x)+4cosx的值域为[-5,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-2x+2.
(1)若x∈[t,t+1],求f(x)的最小值并用解析式g(t)表示;
(2)求g(t)在t∈[-2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)证明函数f(x)是R上的单调减函数;
(2)解关于x的不等式$\frac{1}{2}$f(-2x2)-f(x)>$\frac{1}{2}$f(4x)-f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=$\frac{1}{2+i}$-i2015(i为虚数单位),则$\overline{z}$的虚部为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{4}{5}$iD.-$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,前三项分别是x,2x,4x-2,数列{an}的前n项和为Sn
(1)求x的值,数列{an}的通项公式an及其前n项和Sn
(2)若数列{bn}满足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,且Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:
①60°;②-21°.
(2)试写出终边在直线y=-$\sqrt{3}$x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线$y=\sqrt{2}$过椭圆的焦点,点P是椭圆上位于第一象限的点,并满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.
(1)求椭圆方程和点P坐标;
(2)求证直线AB的倾斜角为定值.

查看答案和解析>>

同步练习册答案