【题目】已成椭圆C: =1(a>b>0)的左右顶点分别为A1、A2 , 上下顶点分别为B2/B1 , 左右焦点分别为F1、F2 , 其中长轴长为4,且圆O:x2+y2= 为菱形A1B1A2B2的内切圆.
(1)求椭圆C的方程;
(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于 n2 , 求n的取值范围.
【答案】
(1)解:由题意知2a=4,所以a=2,
所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则
直线A2B2的方程为 ,即bx+2y﹣2b=0,
所以 = ,解得b2=3,
故椭圆C的方程为
(2)解:由题意,可设直线l的方程为x=my+n,m≠0,
联立 ,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)
由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,
化简得3m2﹣n2+4=0,
设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则 =﹣1,
解得:t=﹣ ,
所以△F1HN的面积 = (n+1)丨﹣ 丨= ,
代入3m2﹣n2+4=0,消去n化简得 = 丨m丨,
所以 丨m丨≥ n2= (3m2+4),解得 ≤丨m丨≤2,即 ≤m2≤4,
从而 ≤ ≤4,又n>0,
所以 ≤n≤4,
n的取值范围为[ ,4]
【解析】(1)由题意求得a,直线A2B2的方程为 ,利用点到直线的距离公式,即可求得b的值,求得椭圆C的方程;(2)设直线方程,代入椭圆方程,由△=0,求得m和n的关系,利用三角形的面积公式,求得m的取值范围,代入即可求得n的取值范围.
科目:高中数学 来源: 题型:
【题目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函数f(x)= ﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB= ,对任意满足条件的A,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=2|x|﹣4的图象与曲线C:x2+λy2=4恰有两个不同的公共点,则实数λ的取值范围是( )
A.[﹣ , )
B.[﹣ , ]
C.(﹣∞,﹣ ]∪(0, )
D.(﹣∞,﹣ ]∪[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的左、右焦点为F1 , F2 , 设点F1 , F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足 = + ,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线 (a>0,b>0)的右焦点F2(c,0)作圆x2+y2=a2的切线,切点为M,延长F2M交抛物线y2=﹣4cx于点P,其中O为坐标原点,若 ,则双曲线的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x,y∈R,向量 分别为直角坐标平面内x,y轴正方向上的单位向量,若向量 , ,且 .
(Ⅰ)求点M(x,y)的轨迹C的方程;
(Ⅱ)设椭圆 ,P为曲线C上一点,过点P作曲线C的切线y=kx+m交椭圆E于A、B两点,试证:△OAB的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于( )
A.{3,5}
B.{3,4}
C.{﹣9,3}
D.{﹣9,3,4}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com