精英家教网 > 高中数学 > 题目详情
12.如图,在圆C中,点A,B在圆上,已知|AB|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值(  )
A.1B.2C.4D.不能确定

分析 过点C作CD⊥AB于D,可得AD=$\frac{1}{2}$AB=1,在Rt△ACD中,利用三角函数的定义算出cosA=$\frac{1}{|AC|}$,再由向量数量积的公式加以计算,可得$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

解答 解:过点C作CD⊥AB于D,则D为AB的中点.
在Rt△ACD中,AD=$\frac{1}{2}$AB=1,
可得cosA=$\frac{AD}{AC}=\frac{1}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=$|\overrightarrow{AB}||\overrightarrow{AC}|$cosA=$|\overrightarrow{AB}|•|\overrightarrow{AC}|•\frac{1}{|\overrightarrow{AC}|}$=$|\overrightarrow{AB}|=2$,
故选:B.

点评 本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.将500个实验样本编号为001,002,003,…,500.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的一个号码为005,这500个实验样本分别在三个本库,从001到100在甲样本库,从101到250放在乙样本库,从251到500放在丙样本库,则甲、乙、丙三个样本库被抽中的样本个数分别为(  )
A.10,15,25B.10,16,24C.11,15,24D.12,13,25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.10101(2)转化为十进制数是21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x,3),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.3B.5C.$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={x|x2-3x+2=0},B={0,1},则A∪B=(  )
A.{1}B.{0,1,2}C.(1,2)D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0,y0),且|OP|=r(r>0),定义sicosθ=$\frac{{x}_{0}+{y}_{0}}{r}$,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论:
①该函数是偶函数;
②该函数的一个对称中心是($\frac{3π}{4}$,0);
③该函数的单调递减区间是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
④该函数的图象与直线y=$\frac{3}{2}$没有公共点;
以上结论中,所有正确的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与抛物线y2=-16x的准线交于A,B,且|AB|=6,则双曲线的离心率为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.i是虚数单位,若z(2+i)=1+3i,则复数z=(  )
A.$\frac{-1+5i}{5}$B.$\frac{-1+7i}{5}$C.1+iD.$\frac{-1+5i}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ 2x-y-2≥0\end{array}\right.$,则z=x+2y的最小值为2.

查看答案和解析>>

同步练习册答案