精英家教网 > 高中数学 > 题目详情
10.设θ是三角形的内角,下列各对数中均取正值的是 (  )
A.tanθ和cosθB.cosθ和cotθC.sinθ和secθD.cot$\frac{θ}{2}$和sinθ

分析 利用三角形的内角的范围,判断三角函数值的符号,推出结果即可.

解答 解:θ是三角形的内角,sinθ>0,tanθ和cosθ,secθ,cotθ的符号不确定,cot$\frac{θ}{2}$>0,
故选:D.

点评 本题考查三角函数值的符号的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知Sn是数列{an}的前n项和,且Sn=n2-4n+4.
(1)求数列{an}的通项公式;
(2)设各项均不为零的数列{cn}中,所有满足ck•ck+1<0的正整数k的个数称为这个数列{cn}的变号数,令cn=1-$\frac{4}{{a}_{n}}$(n为正整数),求数列{cn}的变号数;
(3)记数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,若T2n+1-Tn≤$\frac{m}{15}$对n∈N+恒成立,求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{4}}\end{array}\right.$且z=2x+y的最大值与最小值分别为a和b,则a-b的值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$,设数列{bn}的前n项和为Sn,Tn=Sn-$\frac{1}{{S}_{n}}$,求Tn的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1-an=2n(n∈N*).
(1)求数列{an}的通项公式;
(2))设bn=2${\;}^{{a}_{n}-{n}^{2}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,角A,B,C所对的边分别为a,b,c,若$\frac{a}{cos\frac{A}{2}}$=$\frac{b}{cos\frac{B}{2}}$,则△ABC的形状是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义在(-∞,+∞)上的减函数,且x1+x2>0,则(  )
A.f(x1)>f(-x2B.f(-x1)>f(-x2C.f(x1)<f(-x2D.f(-x1)<f(-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线l过点P($\frac{4}{3}$,2)
(1)若在坐标轴上截距绝对值相等,求直线1的方程.
(2)当与x轴、y轴的正方向分别交于A、B两点,△A0B的面积为6时.求直线1的方程.
(3)当与x轴、y轴的正方向分别交于A、B两点.|PA|•|PB|取最小时,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,若c=1,a=$\sqrt{3}$,A=$\frac{2π}{3}$,则b=1.

查看答案和解析>>

同步练习册答案