精英家教网 > 高中数学 > 题目详情

【题目】设函数,(为常数),.曲线在点处的切线与轴平行

(1)的值;

(2)的单调区间和最小值;

(3)对任意恒成立,求实数的取值范围

【答案】(1)k=1;(2)的单调递减区间为,单调递增区间为,最小值为;(3) .

【解析】

(1)首先求得导函数,然后利用导函数研究函数切线的性质得到关于k的方程,解方程即可求得k的值;

(2)首先确定函数的定义域,然后结合导函数的符号与原函数的单调性求解函数的单调区间和函数的最值即可;

(3)用问题等价于据此求解实数a的取值范围即可.

(1),因为曲线在点处的切线与轴平行,所以,所以.

(2),定义域为

,得,当变化时,的变化如下表:

由上表可知,的单调递减区间为,单调递增区间为,最小值为.

(3)若对任意成立,则

,解得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性 ;

(2)若对任意恒成立,求实数的取值范围;

(3)当时,若函数有两个极值点,求

的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,均为边长是2的等边三角形,平面平面CBE,点O是BE的中点。

(1)求证:

(2)求直线AB与平面ACE所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为, 已知,且 三个数依次成等差数列.

(Ⅰ)求的值;

(Ⅱ)求数列的通项公式;

(Ⅲ)若数列满足,设是其前项和,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x3+ex-e-x

(1)判断此函数的奇偶性,并说明理由;

(2)判断此函数的单调性(不需要证明);

3)求不等式f2x-1+f-3)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为.

(1)求角的大小;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,若的中点.

(1)证明:平面

(2)求异面直线所成角;

(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.

查看答案和解析>>

同步练习册答案