分析 (1)命题p:由log2[g(x)]≥1,可得g(x)≥2,即2x-2≥2,解得x范围.由于log2[g(x)]≥1是假命题,即可得出x的取值范围.
(2)对于命题r:由f(x)<0解得2m<x<-m-3;由g(x)<0解得x<1.¬r是¬q的必要不充分条件,可得r是q的充分不必要条件.即可得出.
解答 解:(1)命题p:由log2[g(x)]≥1,可得g(x)≥2,即2x-2≥2,即2x≥22,解得x≥2.
∵log2[g(x)]≥1是假命题,∴x<2.
∴x的取值范围是x<2.
(2)对于命题r:由f(x)<0解得2m<x<-m-3;
由g(x)<0解得x<1.
¬r是¬q的必要不充分条件,∴r是q的充分不必要条件.
∴$\left\{\begin{array}{l}{2m<3}\\{-m-3<3}\end{array}\right.$,m<-1,解得-6<m<-1.
∴m的取值范围是-6<m<-1.
点评 本题考查了不等式的解法、对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | C${\;}_{6}^{3}$($\frac{1}{2}$)6 | B. | A${\;}_{4}^{2}$($\frac{1}{2}$)6 | C. | C${\;}_{4}^{2}$($\frac{1}{2}$)6 | D. | C${\;}_{4}^{1}$($\frac{1}{2}$)6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (?p)∨q | B. | p∧q | C. | (?p)∧(?q) | D. | (?p)∨(?q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com