精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求圆C的直角坐标方程及直线的斜率;

2)直线与圆C交于MN两点,中点为Q,求Q点轨迹的直角坐标方程.

【答案】(1)圆C的直角坐标方程为,直线的斜率为(2)Q点的轨迹方程为

【解析】

1)直接利用转换关系式,把参数方程、极坐标方程和直角坐标方程之间进行转换;

2)利用中点的坐标公式化简得,进而可得,再求得的范围即可得到结论.

1)由

即圆C的直角坐标方程为.

由直线的参数方程可得,故直线的斜率为1.

2)设,中点,将MN代入圆方程得:

①,

②,

-②得:

化简得

因为直线的斜率为1,所以上式可化为

代入圆的方程,解得

所以Q点的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题:

①函数的图象关于轴对称的充要条件是

②已知是等差数列的前项和,若,则

③函数与函数的图象关于直线对称;

④对于任意两条异面直线,都存在无穷多个平面与这两条异面直线所成的角相等.

其中正确的命题有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的(

A.样本中的女生数量多于男生数量

B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量

C.样本中的男生偏爱物理

D.样本中的女生偏爱历史

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求圆C的直角坐标方程及直线的斜率;

2)直线与圆C交于MN两点,中点为Q,求Q点轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案