精英家教网 > 高中数学 > 题目详情

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

【答案】B

【解析】

通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C对.

由茎叶图知

甲的最大值为37,最小值为8,所以甲的极差为29,故A

甲中间的两个数为2224,所以甲的中位数为B不对

甲的命中个数集中在20而乙的命中个数集中在1020,所以甲的平均数大,故C

乙的数据中出现次数最多的是21,所以D

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率为. 

(1)求椭圆的标准方程;

(2)过坐标原点作直线交椭圆两点,过点的平行线交椭圆两点.是否存在常数, 满足?若存在,求出这个常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.两点的直线方程为

B.关于直线的对称点为

C.直线与两坐标轴围成的三角形的面积是2

D.经过点且在轴和轴上截距都相等的直线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的一条直角是椭圆的长轴,动直线,当过椭圆上一点且与圆相交于点时,弦的最小值为.

(1)求圆即椭圆的方程;

(2)若直线是椭圆的一条切线,是切线上两个点,其横坐标分别为,那么以为直径的圆是否经过轴上的定点?如果存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 分别为 的中点, .

(1)求证:直线平面

(2)求证:直线 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史。某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位; )数据,将数据分组如下表:

分组

频数

频率

4

26

28

10

2

合计

100

(1)在答题卡上完成频率分布表;

(2)以表中的频率作为概率,估计重量落在中的概率及重量小于2.45的概率是多少?

(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此,估计这100个数据的平均值.

查看答案和解析>>

同步练习册答案