精英家教网 > 高中数学 > 题目详情

【题目】某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200,并从中抽取了40.

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?

(3)在各层抽样中可采取哪种抽样方法?

【答案】(1) 3 600.(2)高一、高二、高三所抽人数分别为50,40,30.

(3)在各层抽样中可采取简单随机抽样与系统抽样的方式.

【解析】

(1) 根据高二年级所占角度和人数可以得到答案;(2) 根据三个年级人数所占比例,可以求出人数;(3) 根据所学知识可知有系统抽样和随机抽样等方法

(1) 3 600.(2)高一、高二、高三所抽人数分别为50,40,30.

(3)在各层抽样中可采取简单随机抽样与系统抽样的方式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}的首项a1a(a∈R).设数列的前n项和为Sn,且成等比数列.

(1)求数列{an}的通项公式及Sn

(2).n≥2时,求AnBn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,定点A,B,C,D满足| |=| |=| |,| || |=| || |=| || |=﹣4,动点P,M满足| |=2, = ,则| |的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2﹣1|+x2+kx,且定义域为(0,2).
(1)求关于x的方程f(x)=kx+3在(0,2)上的解;
(2)若关于x的方程f(x)=0在(0,2)上有两个的解x1 , x2 , 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

产品A

8

12

40

32

8

产品B

7

18

40

29

6


(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公差为d的等差数列,{bn}是公比为q(q≠1)的等比数列.记cn=bn﹣an
(1)求证:数列{cn+1﹣cn+d}为等比数列;
(2)已知数列{cn}的前4项分别为9,17,30,53.
①求数列{an}和{bn}的通项公式;
②是否存在元素均为正整数的集合A={n1 , n2 , …,nk},(k≥4,k∈N*),使得数列cn1 , cn2 , …,cnk等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.

(1){an}的通项公式;

(2)a1+a4+a7+…+a3n2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①设为直线,为平面,且,则“”是“”的充要条件;

②若的充分不必要条件,则的必要不充分条件;;

已知为两个命题,若“”为假命题,则“为真命题”

④若不等式恒成立,则的取值范围是

⑤若命题,则

其中真命题的序号是____________(写出全部真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数(0, 2π)内有两个不同零点

(1)求实数的取值范围

(2)的值

查看答案和解析>>

同步练习册答案