【题目】设双曲线方程为,过其右焦点且斜率不为零的直线与双曲线交于A,B两点,直线的方程为,A,B在直线上的射影分别为C,D.
(1)当垂直于x轴,时,求四边形的面积;
(2),的斜率为正实数,A在第一象限,B在第四象限,试比较与1的大小;
(3)是否存在实数,使得对满足题意的任意,直线和直线的交点总在轴上,若存在,求出所有的值和此时直线和交点的位置;若不存在,请说明理由.
【答案】(1);(2);(3)存在,,此时两直线的交点为.
【解析】
(1))当垂直于x轴,直线方程为,四边形为矩形,将代入双曲线方程,求出坐标,得出,即可求解;
(2)设的方程为,,设两点的纵坐标分别为,将的方程与双曲线方程联立,得到关于的方程,根据韦达定理得出关系,结合,,,将根据线段长公式化简,
再利用点在双曲线上可得,由,
即可得出结论;
(3)设,,则,,求出直线和直线的方程,利用两条直线相交在轴上,可得,将关系,代入,得对一切都成立,有,求出交点的横坐标,即可求解.
(1)右焦点的坐标为.故.
联立解得.故,
又,故四边形的面积为;
(2)设的方程为,这里.
将的方程与双曲线方程联立,得到
,即.
由知,此时,
由于,故,
即,故,因此;
(3)由(2)得.(有两交点表示)
设,,则,.
的绝对值不小于,故,且.
又因直线斜率不为零,故.
直线的方程为.
直线的方程为.
若这两条直线的交点在轴上,则当时,
两方程的应相同,即
.
故,
即.
现,,
代入上式,得对一切都成立.
即,.
此时交点的横坐标为
.
综上,存在,,此时两直线的交点为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线l与椭圆C交于P,Q两点,且点M满足.
(1)若点,求直线的方程;
(2)若直线l过点且不与x轴重合,过点M作垂直于l的直线与y轴交于点,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)设是的反函数.当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,().
(1)计算,,,,并求数列的通项公式;
(2)若数列满足,求证:数列是等比数列;
(3)由数列的项组成一个新数列:,,,,,设为数列的前项和,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥的体积为
(1)求三棱锥的高;
(2)在线段AB上取一点D,当D在什么位置时,和的夹角大小为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有____________(把所有正确的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,若,则称是“数列”.
(1)若是“数列”,且,,,,求的取值范围;
(2)若是等差数列,首项为,公差为,且,判断是否为“数列”;
(3)设数列是等比数列,公比为,若数列与都是“数列”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为实数),.
(1)若函数的最小值是,求的解析式;
(2)在(1)的条件下,在区间上恒成立,试求的取值范围;
(3)若,为偶函数,实数,满足,,定义函数,试判断值的正负,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某居民最近连续几年的月用水量进行统计,得到该居民月用水量 (单位:吨)的频率分布直方图,如图一.
(1)求的值,并根据频率分布直方图估计该居民月平均用水量;
(2)已知该居民月用水量与月平均气温(单位:℃)的关系可用回归直线模拟.2019年当地月平均气温统计图如图二,把2019年该居民月用水量高于和低于的月份作为两层,用分层抽样的方法选取5个月,再从这5个月中随机抽取2个月,求这2个月中该居民恰有1个月用水量超过的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com