精英家教网 > 高中数学 > 题目详情

(本题满分14分)

已知函数是方程f(x)=0的两个根f(x)的导数.

(n=1,2,……)

 (1)求的值;

 (2)证明:对任意的正整数n,都有>a;

(3)记(n=1,2,……),求数列{bn}的前n项和Sn

(-∞,         ]∪[1, +∞)


解析:

(1)解方程x2+x-1=0得x=      

?知?=,β=      

(2) f’ (x)=2x+1

         =     -                =            

下面我们用数学归纳法来证明该结论成立

①当n=1时,a1=1<=?成立,

②假设n=k(k≥1, k∈N*)时,结论也成立,即ak<成立,

③那么当n=k+1时,

==-+<-+=+=

        

这就是说,当n=k+1时,结论也成立,故对于任意的正整数n,都有an<

(3)


=   =       =

=()2

由题意知an>,那么有an>β,于是对上式两边取对数得

ln=ln()2=2 ln()

即数列{bn}为首项为b1= ln()=2ln(       ),公比为2的等比数列。

故其前n项和

 


Sn=2ln(       )       =2ln(       )(2n -1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案