精英家教网 > 高中数学 > 题目详情

【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X<6)=(
A.0.1358
B.0.1359
C.0.2716
D.0.2718

【答案】B
【解析】解:∵随机变量X服从正态分布N(μ,σ2), P(μ﹣2σ<X≤μ+2σ)=0.9544,
P(μ﹣σ<X≤μ+σ)=0.6826,
μ=4,σ=1,
∴P(2<X≤6)=0.9544,
P(3<X≤5)=0.6826,
∴P(2<X≤6﹣P(3<X≤5)=0.9544﹣0.6826=0.2718,
∴P(5<X<6)= =0.1359
故选B.
根据变量符合正态分布,和所给的μ和σ的值,根据3σ原则,得到P(2<X≤6)=0.9544,P(3<X≤5)=0.6826,两个式子相减,根据对称性得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x+1|+|x﹣1|.
(Ⅰ)求不等式f(x)<4的解集;
(Ⅱ)若不等式f(x)﹣|a﹣1|<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数f(x)在点(1,f(1))的切线平行于y=2x+3,求a的值.
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:
①函数 的一条对称轴是x=
②函数y=tanx的图象关于点( ,0)对称;
③正弦函数在第一象限为增函数;
④若 ,则x1﹣x2=kπ,其中k∈Z;
⑤函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围为(1,3).
以上五个命题中正确的有(填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5


(1)试求y关于x的回归直线方程;(参考公式: = =y﹣
(2)已知每辆该型号汽车的收购价格为w=0.01x3﹣0.09x2﹣1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价﹣收购价)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,c= a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次不等式f(x)<0的解集为{x|x<﹣1或 ,则f(ex)>0的解集为(
A.{x|x<﹣1或x>﹣ln3}
B.{x|﹣1<x<﹣ln3}
C.{x|x>﹣ln3}
D.{x|x<﹣ln3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为y2=4x,直线L过定点P(﹣2,1),斜率为k.当k为何值时直线与抛物线:
(1)只有一个公共点;
(2)有两个公共点;
(3)没有公共点.

查看答案和解析>>

同步练习册答案