【题目】在△ABC中,∠ACB为钝角,AC=BC=1, 且x+y=1,函数 的最小值为 ,则 的最小值为 .
科目:高中数学 来源: 题型:
【题目】定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1= + + ,1= + + + ,1= + + + + ,…,依此拆分法可得1= + + + + + + + + + + + + + ,其中m,n∈N* , 则m﹣n=( )
A.﹣2
B.﹣4
C.﹣6
D.﹣8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣kx,x∈R(e是自然对数的底数).
(1)若k∈R,求函数f(x)的单调区间;
(2)若k>0,讨论函数f(x)在(﹣∞,4]上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1: (α为参数)与曲线C2:ρ=4sinθ
(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1和C2公共弦的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同的四个小球,它们的标号分别为1、2、3、4,现从袋中不放回地随机抽取两个小球,记第一次取出的小球的标号为a,第二次取出的小球的标号为b,记事件A为“a+b≥6“.
(1)列举出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在区间[0,2]内任取两个实数x,y,求事件“x2+y2≥12P(A)“的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为, 过点, 记椭圆的左顶点为.
(1)求椭圆的方程;
(2)设垂直于轴的直线交椭圆于两点, 试求面积的最大值;
(3)过点作两条斜率分别为的直线交椭圆于两点,且, 求证: 直线恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:
分组 | 频数 | 频率 |
[60,75) | 2 | 0.04 |
[75,90) | 3 | 0.06 |
[90,105) | 14 | 0.28 |
[105,120) | 15 | 0.30 |
[120,135) | A | B |
[135,150] | 4 | 0.08 |
合计 | C | D |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+)(ω>0)的部分图象如图所示,下面结论正确的个数是( )
①函数f(x)的最小正周期是2π
②函数f(x)的图象可由函数g(x)=sin2x的图象向左平移 个单位长度得到
③函数f(x)的图象关于直线x= 对称
④函数f(x)在区间[ ]上是增函数.
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{ }是首项为1公比为2的等比数列,求数列{bn}前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com