精英家教网 > 高中数学 > 题目详情

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

(Ⅰ);(Ⅱ)当时,建造费用最小时时,建造费用最小时.

解析试题分析:(Ⅰ)由圆柱和球的体积的表达式,得到l和r的关系.再由圆柱和球的表面积公式建立关系式,将表达式中的l用r表示.并注意到写定义域时,利用l≥2r,求出自变量r的范围;(Ⅱ)用导数的知识解决,注意到定义域的限制,在区间(0,2]中,极值未必存在,将极值点在区间内和在区间外进行分类讨论.
试题解析:(I)设容器的容积为V,由题意知

由于因此                          .3分
所以建造费用
因此                       ..5分
(II)由(I)得
由于   
;所以          .7分
(1)当时,

所以是函数y的极小值点,也是最小值点。           .10分
(2)当时, 当函数单调递减,
所以r=2是函数y的最小值点,
综上所述,当时,建造费用最小时
时,建造费用最小时                13分
考点:1.函数解析式和定义域;2.函数模型的应用;3.函数最值的求法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数交于两点且,奇函数,当时,都在取到最小值.
(1)求的解析式;
(2)若图象恰有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域为,并且满足,且,当时,
(1).求的值;(3分)
(2).判断函数的奇偶性;(3分)
(3).如果,求的取值范围.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人.某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人.该兴趣小组想找一个函数来拟合该景点对外开放的第年与当年的游客人数(单位:万人)之间的关系.
(1)根据上述两点预测,请用数学语言描述函数所具有的性质;
(2)若=,试确定的值,并考察该函数是否符合上述两点预测;
(3)若=,欲使得该函数符合上述两点预测,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义域为的函数为实数)。
(1)若是奇函数,求的值;  
(2)当是奇函数时,证明对任何实数都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案