精英家教网 > 高中数学 > 题目详情

【题目】某服装店为庆祝开业三周年,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).

参考公式与参考数据:.

【答案】(1)(2)预测第六天的参加抽奖活动的人数为29.

【解析】

(1)根据表中的数据,利用公式,分别求得的值,即可得到回归直线方程;

(2)将代入回归直线方程,求得,即可作出判断,得到结论.

(1)根据表中的数据,可得

又由

故所求回归直线方程为.

(2)将代入中,求得

故预测第六天的参加抽奖活动的人数为29.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的六个命题:

①线性回归直线必过样本数据的中心点

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于1;

⑤残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;

⑥甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.

其中真命题的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在送医下乡活动中,某医院安排3名男医生和2名女医生到三所乡医院工作,每所医院至少安排一名医生,且女医生不安排在同一乡医院工作,则不同的分 配方法总数为( )
A.78
B.114
C.108
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1,F2分别为椭圆C

(1)若椭圆C上的点

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),直线的参数方程为 (为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线的普通方程以及曲线的极坐标方程;

(2)若直线与曲线的两个交点分别为,直线轴的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

组号

分组

频数

频率

第1组

[50,60)

5

0.05

第2组

[60,70)

0.35

第3组

[70,80)

30

第4组

[80,90)

20

0.20

第5组

[90,100]

10

0.10

合计

100

1.00

(Ⅰ)求的值;

(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4及圆内一点P(2,5).
(1)求过P点的弦中,弦长最短的弦所在的直线方程;
(2)求过点M(5,0)与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数的定义域为D,若存在,使成立,则称以为坐标的点是函数的图象上的“稳定点”.

(1)若函数的图象上有且只有两个相异的“稳定点”,试求实数a的取值范围;

(2)已知定义在实数集R上的奇函数存在有限个“稳定点”,求证:必有奇数个“稳定点”.

查看答案和解析>>

同步练习册答案