精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)a1时,求不等式f(x)2的解集;

(2)若对任意xR,不等式f(x)≥a23a3恒成立,求a的取值范围.

【答案】(1) .(2) [12]

【解析】

1)对分情况讨论,去绝对值处理,从而求解出结果;

2)对任意xR,不等式f(x)≥a23a3恒成立,即求函数,根据绝对值不等式的性质可得f(x)的最小值为|a|,故原不等式等价于|a|≥a33a3,分情况讨论,进行求解。

(1)a1时,f(x)|x1||x2|.

,当x≤1时,f(x)1x2x32x

f(x)2可得,

解得x

,当1x≤2时,f(x)x12x1

此时f(x)2无解;

,当x2时,f(x)x1x22x3

此时由f(x)2可得,

解得x

综上,可得不等式f(x)2的解集为

(2)因为f(x)|xa||x2a|≥|(xa)(x2a)||a|

f(x)取得最小值|a|

因此原不等式等价于|a|≥a33a3

,当a≥0时,有aa23a3

a24a3≤0

解得2a≤2

此时有0≤a≤2

,当a0时,有-aa23a3

a22a3≤0

解得-1≤a≤3

此时有-1≤a0

综上,可知a的取值范围是[12]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抚州市某中学利用周末组织教职员工进行了一次秋季登军峰山健身的活动,有人参加,现将所有参加人员按年龄情况分为等七组,其频率分布直方图如下图所示.已知之间的参加者有4人.

1)求之间的参加者人数

2)组织者从之间的参加者(其中共有名女教师包括甲女,其余全为男教师)中随机选取名担任后勤保障工作,求在甲女必须入选的条件下,选出的女教师的人数为2人的概率.

3)已知之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,平面分别是的中点.

)求证:平面

)若与平面所成的角为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】珠海市某学校的研究性学习小组,对昼夜温差(最高温度与最低温度的差)大小与绿豆种子一天内出芽数之间的关系进行了研究,该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的颗绿豆种子当天内的出芽数(如图2)

已知绿豆种子出芽数(颗) 和温差具有线性相关关系.

(1)求绿豆种子出芽数 (颗)关于温差的回归方程;

(2)假如4月1日至7日的日温差的平均值为,估计4月7日浸泡的颗绿豆种子一天内的出芽数.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对相关系数r来说,下列说法正确的是(  ).

A.越接近0,相关程度越大;越接近1,相关程度越小

B.越接近1,相关程度越大;越大,相关程度越小

C.越接近1,相关程度越大;越接近0,相关程度越小

D.越接近1,相关程度越小;越大,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,是棱上动点,下列说法正确的是( )

A. 对任意动点,在平面不存在与平面平行的直线

B. 对任意动点,在平面存在与平面垂直的直线

C. 当点运动到的过程中,与平面所成的角变大

D. 当点运动到的过程中,点到平面的距离逐渐变小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知分别为的外心,重心,.

1)求点的轨迹的方程;

2)是否存在过的直线交曲线两点且满足,若存在求出的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顾客请一位工艺师把两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:

则最短交货期为_______个工作日.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是国家统计局今年411日发布的20183月到20193月全国居民消费价格的涨跌幅情况折线图.(注:20192月与20182月相比较称同比,20192月与20191月相比较称环比),根据该折线图,下列结论错误的是

A. 20183月至20193月全国居民消费价格同比均上涨

B. 20183月至20193月全国居民消费价格环比有涨有跌

C. 20193月全国居民消费价格同比涨幅最大

D. 20193月全国居民消费价格环比变化最快

查看答案和解析>>

同步练习册答案