精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,直线与抛物线C交于AB两点,若,则.

1)求抛物线C的方程;

2)分别过点AB作抛物线C的切线,若分别交x轴于点MN,求四边形面积的最小值.

【答案】1;(2.

【解析】

1)设,则方程与抛物线方程联立,可得,根据抛物线的定义可得解得,可得抛物线C的方程为.

2)根据,再换元,利用导数得单调性,利用单调性可得最值.

1)抛物线的焦点为

,则方程与抛物线方程联立,

整理得

,根据抛物线的定义可得

,即抛物线C的方程为.

2)由(1)知

所以切线的方程为,①

同理切线的方程为,②

联立①②得

即切线的交点为

由切线,得,同理可得

又∵

P到直线的距离为

∴四边形的面积

,则

时,成立,S单调递增,

∴当,即时,四边形的面积的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的实常数,函数.

(1)讨论函数的单调性;

(2)若函数有两个不同的零点

(ⅰ)求实数的取值范围;

(ⅱ)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.

(Ⅰ)设消费者的年龄为,对该款智能家电的评分为.若根据统计数据,用最小二乘法得到关于的线性回归方程为,且年龄的方差为,评分的方差为.求的相关系数,并据此判断对该款智能家电的评分与年龄的相关性强弱.

(Ⅱ)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请判断是否有的把握认为对该智能家电的评价与年龄有关.

好评

差评

青年

8

16

中老年

20

6

附:线性回归直线的斜率;相关系数,独立性检验中的,其中.

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】劳动教育是中国特色社会主义教育制度的重要内容,某高中计划组织学生参与各项职业体验,让学生在劳动课程中掌握一定劳动技能,理解劳动创造价值,培养劳动自立意识和主动服务他人、服务社会的情怀.学校计划下周在高一年级开设“缝纫体验课”,聘请“织补匠人”李阿姨给同学们传授织补技艺。高一年级有6个班,李阿姨每周一到周五只有下午第2节课的时间可以给同学们上课,所以必须安排有两个班合班上课,高一年级6个班“缝纫体验课”的不同上课顺序有( )

A.600B.3600C.1200D.1800

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示七面体中,平面,平面平面,四边形是边长为2的菱形,MN分别为的中点.

1)求证:平面

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,,点ECD边的中点,将沿AE折起,使点D到达点P的位置,且.

1)求证;平面平面ABCE

2)求点E到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥PABCD的底面ABCD是平行四边形,PA面ABCD,M是AD的中点,N是PC的中点.

(1)求证:MN面PAB;

(2)若平面PMC面PAD,求证:CMAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(为自然对数的底数)

(1)设

①若函数处的切线过点,求的值;

②当时,若函数上没有零点,求的取值范围.

(2)设函数,且,求证:当时,.

查看答案和解析>>

同步练习册答案