精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.
(1)证明:P为A1B中点.
(2)若A1B⊥AC1,求二面角B1-PC-B的余弦值.
【答案】分析:(1)取AB中点Q,连接PQ,由于CQ⊥AB,AB⊥CP,根据线面垂直的判定定理可知AB⊥平面CPO,从而得到AB⊥PQ又A1A⊥AB得A1A∥PQ,而点Q是AB的中点,得到P为A1B的中点;
(2)连接AB1,取AC中点R,连接A1R,连B1A,B1R,BR,过B作BH⊥B1R,垂足为H,过B作BG⊥PC,连接GH,根据二面角的平面角的定义可知∠BGH为二面角B1-PC-B的平面角,在三角形BGH中求出此角即可.
解答:解:(1)证明:取AB中点Q,∴CQ⊥AB
又∵AB⊥CP,∴AB⊥平面CPO∴AB⊥PQ,A1A⊥AB
得A1A∥PQ,点Q是AB的中点
∴P为A1B的中点(4分)
(2)连接AB1,取AC中点R,连接A1R,
则BR⊥平面A1C1CA,∴BR⊥AC1,由已知A1B⊥AC1,∴A1R⊥AC1,∴△AC1C~△A1RA∴,∴(6分)
,则AC=2
连B1A,B1R,BR,∵AC⊥平面B1BR,∴平面B1AC⊥平面B1BR,
平面B1AC∩平面B1BR=B1R,过B作BH⊥B1R,垂足为H,
则BH⊥平面B1PC,过B作BG⊥PC,
连接GH,那么∠BGH为二面角B1-PC-B的平面角(8分)
在△B1BR中,在△PBC中,(10分)∴(12分)
点评:本题主要考查了直线与平面垂直的性质,以及二面角的度量,考查空间想象能力,几何逻辑推理能力,以及计算能力,属于常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案