【题目】如图,为了测量某湿地两点间的距离,观察者找到在同一直线上的三点.从点测得,从点测得,,从点测得.若测得,(单位:百米),则两点的距离为( )
A.B.C.D.
【答案】C
【解析】
由已知易得∠EBC=180°﹣75°﹣60°=45°,再由正弦定理求得,再由余弦定理AB2=AC2+BC2﹣2ACBCcos∠ACB=9,所以AB=3.
根据题意,在△ADC中,∠ACD=45°,∠ADC=67.5°,DC=2,
则∠DAC=180°﹣45°﹣67.5°=67.5°,则AC=DC=2,
在△BCE中,∠BCE=75°,∠BEC=60°,CE,
则∠EBC=180°﹣75°﹣60°=45°,
则有,变形可得BC,
在△ABC中,AC=2,BC,∠ACB=180°﹣∠ACD﹣∠BCE=60°,
则AB2=AC2+BC2﹣2ACBCcos∠ACB=9,
则AB=3;
故选:C.
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形MNCD中,MD∥NC,MN=MD=2,∠CDM=60°,E为线段MD上一点,且ME=3,以EC为折痕将四边形MNCE折起,使MN到达AB的位置,且AE⊥DC
(1)求证:DE⊥平面ABCE;
(2)求点A到平面DBE的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.
(1)求椭圆的标准方程;
(2)设为抛物线上的两个动点,且使得线段的中点在直线上,
为定点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有2位男生,3位女生去参加一个联欢活动,该活动有甲、乙两个项目可供参加者选择.
(Ⅰ)为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.求这5人中恰好有3人去参加甲项目联欢的概率;
(Ⅱ)若从这5人中随机选派3人去参加甲项目联欢,设表示这3个人中女生的人数,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设不等式确定的平面区域为U,确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V内的概率;
(2)设集合;集合若从集合A到集合B可以建立m个不同的映射?从集合B到集合A可以建立n个不同的映射,求m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平
均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上件产品作为样本算出他们的重量(单位:克)重量的分组区间为,,……,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过克的产品数量.
(2)在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列.
(3)从流水线上任取件产品,求恰有件产品合格的重量超过克的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com