精英家教网 > 高中数学 > 题目详情
为了解某校高三学生的视力情况,随机抽查了该校50名高三学生,得到如图所示的频率分布直方图.
(Ⅰ)求图中x的值;
(Ⅱ)从视力不低于1.0的学生中随机选取2人,设这2人中视力不低于1.2的人数为ξ,求ξ的数学期望.
考点:离散型随机变量的期望与方差,频率分布直方图
专题:概率与统计
分析:(Ⅰ)由频率分布直方图,能求出x.
(Ⅱ)由已知得ξ=0,1,2,分别求出相应的概率,由此能求出ξ的数学期望.
解答: (本小题满分13分)
解:(Ⅰ)由频率分布直方图,得:
x=[1-(0.3×3+0.6+2.5)×0.2]÷0.2=1.…(6分)
(Ⅱ)由已知得ξ=0,1,2,
由频率分布直方图,得视力不低于1.0的学生有10人,
视力不低于1.2的人数为3人,
∴P(ξ=0)=
C
2
10
C
2
13
=
15
26

P(ξ=1)=
C
1
10
C
1
3
C
2
13
=
5
13

P(ξ=2)=
C
2
3
C
2
13
=
1
26

∴ξ的分布列为:
ξ012
P
15
26
5
13
1
26
Eξ=
5
13
+2•
1
26
=
6
13
…(13分)
点评:本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△OAB中,OA=4,OB=2,∠AOB=
3
,点P是线段OA和OB的垂直平分线的交点,记
OP
=x
OA
+y
OB
,则x+y的值为(  )
A、
1
2
B、
4
3
C、
7
4
D、
13
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,短轴上端点为B,△BF1F2为等边三角形.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设过点F2的直线l交椭圆C于P、Q两点,若△F1 PQ面积的最大值为6,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=3x+
1
3x
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(k2+1)x2-2kx-(k-1)2(k∈R),x1,x2是f(x)的两个零点,且x1>x2
(1)①求证:x1=1;②求x2的取值范围;
(2)记g(k)为函数f(x)的最小值,当x2∈[-2,-1]时,求g(k)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
为向量,下列结论:
①若
a
=
b
b
=
c
,则
a
=
c

②若
a
b
b
c
,则
a
c

③|
a
b
|=|
a
|•|
b
|;
④若
a
b
=
a
c
,则
b
=
c
的逆命题.
其中正确的是(  )
A、①②B、①④
C、①②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x 
1
2
(x>0),若对于任意α∈(0,
π
2
),都有f(tanα)+f(
1
tanα
)≥4cosβ(0≤β≤2π)成立,则β的取值范围是(  )
A、[
π
3
3
]
B、[
π
6
11π
6
]
C、[0,
π
3
]∪[
3
,2π]
D、[0,
π
6
]∪[
11π
6
,2π

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1•n,则S17=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的一条弦,点P是AB上一点,点C是圆O上一点,PC⊥OP,AP=4,PB=2,则PC=
 

查看答案和解析>>

同步练习册答案