精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面是菱形,交于点底面的中点,.

(1)求证: 平面

(2)求异面直线所成角的余弦值;

(3)求与平面所成角的正弦值.

【答案】1)证明见详解;(2;(3

【解析】

1)连接OF,可得OF为的中位线,OF∥DE,可得证明;

(2)连接C点与AD中点为x轴,CBy轴,CEz轴建立空间直角坐标系,可得的值,可得异面直线所成角的余弦值;

(3)可得平面EBD的一个法向量为,可得与平面所成角的正弦值.

解:(1

如图,连接OF,因为底面是菱形,交于点

可得O点为BD的中点,又的中点,所以OF为的中位线,

可得OF∥DE,又,DE不在平面ACF内,

可得 平面

2)如图连接C点与AD中点位x轴,CBy轴,CEz轴建立空间直角坐标系,

设菱形的边长为2,可得CE=2

可得E(002)O(,,0),A(,1,0),F(0,1,1),

可得:,,设异面直线所成角为

可得

3)可得D (,-1,0),B(0,2,0),E(0,0,2),

可得,,设平面EBD的一个法向量为

可得,可得的值可为,由

可得与平面所成角的正弦值为

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)求曲线的极坐标方程和直线l的直角坐标方程;

2)设直线l与曲线交于不同的两点AB,点M为抛物线的焦点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2, 3, 4的红球,2个编号为AB的黑球,现从中任取2个小球.;

(1)求所取2个小球都是红球的概率;

(2)求所取的2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10.

1)求的值;

2)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:48.69.29.68.79.39.08.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分

(Ⅰ)求椭圆C的方程;

() 求ABP的面积取最大时直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它的外接球(即顶点在球面上且底面圆周也在球面上)的体积比为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

同步练习册答案