精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,过焦点且垂直于x轴的直线被椭圆截得的线段长为3.

(1)求椭圆的方程;

(2)动直线与椭圆交于A,B两点,在平面上是否存在定点P,使得当直线PA与直线PB的斜率均存在时,斜率之和是与无关的常数?若存在,求出所有满足条件的定点P的坐标;若不存在,请说明理由.

【答案】(1)(2)见解析

【解析】

(1)由离心率写出ac的关系,结合条件求得a与b的关系,再由则椭圆方程可求;

(2)设出A,B,P的坐标,联立直线与椭圆方程,将斜率之和用坐标表示,利用韦达定理,化简,并利用多项式的恒等条件(相同次项的系数相等)建立方程,解得P的坐标.

(1) 设椭圆的半焦距为c,则,且.由解得

依题意,,于是椭圆的方程为

(2)设,P(m,n),将,与椭圆方程联立得

则有

如果存在Pmn)使得kPA+kPB为定值,那么kPA+kPB的取值将与t无关,

又直线PA,PB的斜率之和为:

时斜率的和恒为0,解得

综上所述,所有满足条件的定点P的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知被直线分成面积相等的四部分,且截轴所得线段的长为2.

(1)的方程;

(2)若存在过点的直线与相交于两点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若函数恰有一个零点,求的取值范围;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的焦距为,直线的斜率为.

(1)求椭圆的标准方程;

(2)设直线)与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中a

的极大值;

,若对任意的恒成立,求a的最大值;

,若对任意给定的,在区间上总存在s,使成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为直角的扇形OAB区域中,MN分别为OAOB的中点,在MN两点处各有一个通信基站,其信号的覆盖范围分别为以OAOB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是 

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,边长为的正方形,

1)求证:平面

2)求二面角的余弦值;

3)证明:在线段上存在点,使得,并求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ADBC是四面体ABCD中互相垂直的棱,BC=2. AD=2c,且AB+BD=AC+CD=2a,其中ac为常数,则四面体ABCD的体积的最大值是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

(1)求证:

(2)若的中点.

(i)过点作一直线平行,在图中画出直线并说明理由;

(ii)求平面将三棱锥分成的两部分体积的比.

查看答案和解析>>

同步练习册答案