精英家教网 > 高中数学 > 题目详情
如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,BC=1,AE=BE=
3
,若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为
3
3
分析:由面面垂直性质定理,得到AD⊥平面ABCD,从而Rt△ADE中,根据题中数据算出∠AED=∠AED=30°.证出△CDE中,是边长为2的等边三角形,从而∠DEC=60°.将四棱锥E-ABCD的侧面沿展开铺平如图,在展开图△ABE中由余弦定理算出AB长等于3,即为AM+MN+NB的最小值.
解答:解:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,AD⊥AB
∴AD⊥平面ABCD,
可得Rt△ADE中,AD=1,AE=
3

∴∠AED=30°,同理得到∠BEC=30°
∵△CDE中,CD=DE=CE=2,∴∠DEC=60°,
将四棱锥E-ABCD的侧面AED、DEC、CEB沿DE、CE展开铺平如图,
则展开图△ABE中,∠AEB=120°,由余弦定理得
AB2=AE2+BE2-2AE•BE•cos120°=3+3-2×3×(-
1
2
)=9,
解之得AB=3,即AM+MN+BN的最小值为3.
故答案为:3.
点评:本题给出四棱锥E-ABCD,求折线AM+MN+BN的最小值.着重考查了面面垂直性质定理解三角形和空间问题平面化的思路等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=
2
,AE=EC=1.
(Ⅰ)求证:AE⊥平面BCEF;
(Ⅱ)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•吉安二模)如图所示的几何体中,底面ABCD是矩形,AB=9,BC=6,EF∥平面ABCD,EF=3,△ADE和△BCF
都是正三角形,则几何体EFABCD的体积为
63
2
63
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求四面体FBCD的体积;
(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)证明:DF⊥平面ABE;
(2)求二面角A-BD-F大小的余弦值.

查看答案和解析>>

同步练习册答案