精英家教网 > 高中数学 > 题目详情

已知直线,抛物线上一动点P到直线的距离之和的最小值是(   )

A.2B.3C.D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年泰安市模拟)(12分)

       已知椭圆是抛物

线的一条切线。

   (I)求椭圆的方程;

   (II)过点的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011届浙江省嘉兴一中高三高考模拟试题文数 题型:解答题

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.
(1)求的值;(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高二10月阶段性检测数学试卷(解析版) 题型:填空题

给出下列命题,其中正确命题的序号是           (填序号)。

(1)已知椭圆两焦点为,则椭圆上存在六个不同点,使得为直角三角形;

(2)已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;

(3)若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则

(4)已知⊙则这两圆恰有2条公切线。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三第一学期第二次统练试题文科数学 题型:解答题

(本题满分15分)如图,已知直线与抛物线和圆都相切,FC1的焦点.

(1)求ma的值;

(2)设AC1上的一动点,以A为切点作抛物线C1的切线l,直线ly轴于点B,以FA、FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;

(3)在(2)的条件下,记点M点所在的定直线为l2,直线l2y轴交点为N,连接MF交抛物线C1P、Q两点,求△NPQ的面积S的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三高考模拟试题理数 题型:解答题

(本题满分15分)如图,已知直线与抛物线和圆都相切,的焦点.

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求的面积的取值范围.

 

 

查看答案和解析>>

同步练习册答案