精英家教网 > 高中数学 > 题目详情
已知函数,其中为常数.
(1)若函数在区间上单调,求的取值范围;
(2)若对任意,都有成立,且函数的图象经过点
的值.
(1) ;(2)c=-1或c=-2.

试题分析:(1)一元二次函数开口向上时,在对称轴的左侧单减,在对称轴的右侧单增,对称轴公式为x=,由题,≤1,解得;(2)若,则f(x)关于x=a对称,由题,x=-1,所以b=2,将点(c,-b)代入解析式,有 c=-1或c=-2.
试题解析:(1)∵函数
∴它的开口向上,对称轴方程为,
∵函数在区间上单调递增,

 .
(2)∵
∴函数的对称轴方程为
 .
又∵函数的图象经过点
∴有,

.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

现有A,B两个投资项目,投资两项目所获得利润分别是(万元),它们与投入资金(万元)的关系依次是:其中平方根成正比,且当为4(万元)时为1(万元),又成正比,当为4(万元)时也是1(万元);某人甲有3万元资金投资.
(1)分别求出的函数关系式;
(2)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)对任意的实数x1x2D,均有|f(x2)-f(x1)|≤|x2x1|,则称函数f(x)是区间D上的“平缓函数”.
(1)判断g(x)=sin xh(x)=x2x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有|xn+1xn|≤,设yn=sin xn,求证:|yn+1y1|<.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价—成本总价)为元. 试用销售单价表示毛利润并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组那么m2+n2的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,规定:当时, ;当时,,则(  )
A.有最小值,最大值1B.有最大值1,无最小值
C.有最小值,无最大值D.有最大值,无最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若恒成立,则实数a的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数则满足的实数=             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在区间内图像不间断的函数满足,函数,且,又当时,有,则函数在区间内零点的个数是________。

查看答案和解析>>

同步练习册答案