精英家教网 > 高中数学 > 题目详情
6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件共有   (  )
①双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上的任意点P都满足||PF1|-|PF2||=6
②双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的虚轴长为4
③双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个顶点与抛物线y2=6x的焦点重合
④双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为4x±3y=0.
A.1个B.2个C.3个D.4个

分析 利用已知条件求出双曲线方程,然后通过其它体积求出双曲线的标准方程,即可判断选项.

解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,
可得c=5,a=3,可得b=4,
可得双曲线方程为:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);①双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上的任意点P都满足||PF1|-|PF2||=6,可得c=5,a=3,可得b=4,
可得双曲线方程为:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.①满足题意.
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);②双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的虚轴长为4,可得b=2,显然不满足题意.
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);③双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个顶点与抛物线y2=6x的焦点重合,抛物线的焦点坐标($\frac{3}{2}$,0),a=$\frac{3}{2}$≠3,显然不满足题意.
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1满足彖件:(1)焦点为F1(-5,0),F2(5,0);④双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为4x±3y=0.可得$\frac{b}{a}=\frac{4}{3}$,c=5,解得a=3可得b=4,
可得双曲线方程为:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.
故选:B.

点评 本题考查双曲线的简单性质,标准方程的求法,命题的真假的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},
(1)求A∩B,(∁UA)∪(∁UB);
(2)若集合M={x|2a≤x≤2a+1}是集合A的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知奇函数f(x)=$\frac{a•{2}^{x}-2+a}{{2}^{x}+1}$.
(1)求a的值;
(2)求函数f(x)的值域;
(3)若对任意t∈(-1,0],不等式f(t2-mt+7)+f(t2+5t-m)>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线与AE,BE分别交于点C,D.
(1)求证:$\frac{DB}{DE}$=$\frac{PD}{PC}$;
(2)若∠PCE=2∠AEB,求∠PDB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a,b∈R,命题p:直线y=ax+b与圆x2+y2=1相交;命题$q:a>\sqrt{{b^2}-1}$,则p是q的 (  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.角-420°终边上有一异于原点的点(4,-a),则a的值是(  )
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.±4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把二进制数11000转换为十进制数,该十进制数为(  )
A.48B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=cos2x+sinx(-$\frac{π}{6}$≤x≤$\frac{π}{6}$)的最大值与最小值之和为(  )
A.$\frac{3}{2}$B.2C.0D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)为奇函数,且在(-∞,0)上是减函数,若f(-3)=0,则xf(x)<0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

同步练习册答案