精英家教网 > 高中数学 > 题目详情

已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:

(1)A1D与EF所成角的大小;

(2)A1F与平面B1EB所成角;

(3)二面角C-D1B1-B的大小.

 

【答案】

(1)因此与EF所成角的大小为

(2)

(3)二面角约为

【解析】(1)因为所以

可知向量的夹角为

因此与EF所成角的大小为

(2)在正方体中,因为平面,所以是平面的法向量    

因为

所以 ,由,所以可得向量之间的夹角约为

(3)因为平面,所以是平面的法向量,因为

所以,所以可得两向量的夹角为

根据二面角夹角相等或互补可知,二面角约为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连结AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图,过正方形ABCD的中心OOP⊥平面ABCD,已知正方形的边长为2OP=2,连结APBPCPDPMN分别是ABBC的中点,以O为原点,射线OMONOP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若EF分别为PAPB的中点,求ABCDEF的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源:《3.5 空间直角坐标系》2013年高考数学优化训练(解析版) 题型:解答题

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

同步练习册答案