精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在△ABC中,D、F分别是BC、AC的中点, = = =
(1)用 表示向量
(2)求证:B、E、F三点共线.

【答案】
(1)解:如图所示:解延长AD到G,使 =

连接BG、CG,得到四边形ABGC,

∵D是BC和AG的中点,

∴四边形ABGC是平行四边形,则 = + =

= = ), = = ).

∵F是AC的中点,∴ = =

= = )﹣ = ).

= = =


(2)证明:由(1)可知, = ), = ).

= ,即 是共线向量,所以B、E、F三点共线


【解析】(1)由题意作出辅助线构成平行四边形ABGC,由四边形法则和D是AG的中点求出 ,由题意求出 ,由F是AC的中点求出 ,再由向量减法的三角形法则求出 ;(2)由(1)求出 = ,故两个向量共线,即B、E、F三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,其离心率为.

(1)求椭圆的方程;

(2)直线相交于两点,在轴上是否存在点,使为正三角形,若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x3+ax2+bx+c有两个极值点x1 , x2且f(x1)=x1 , 则关于x的方程3[(f(x)]2+2af(x)+b=0的不同实根个数为(
A.2
B.3
C.4
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1﹣2|x﹣ |,则函数g(x)=f[f(x)]﹣ x在区间[﹣2,2]内不同的零点个数是(
A.5
B.6
C.7
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,且是边长为的正三角形,且平面平面,已知点的中点.

(Ⅰ)证明:平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f(x)>1
(1)判断并证明f(x)的单调性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数g(x)=ax3+2(1﹣a)x2﹣3ax在区间(﹣∞, )内单调递减,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某厂的产量x与成本y的一组数据:

产量x(千件)

2

3

5

6

成本y(万元)

7

8

9

12

(Ⅰ)根据表中数据,求出回归直线的方程 = x (其中 = =
(Ⅱ)预计产量为8千件时的成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , g(x)=ln 的图象分别与直线y=m交于A,B两点,则|AB|的最小值为(
A.2
B.2+ln2
C.e2
D.2e﹣ln

查看答案和解析>>

同步练习册答案