精英家教网 > 高中数学 > 题目详情

【题目】设命题p:直线mx﹣y+1=0与圆(x﹣2)2+y2=4有公共点;设命题q:实数m满足方程 + =1表示双曲线.
(1)若“p∧q”为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

【答案】
(1)解:若命题p:直线mx﹣y+1=0与圆(x﹣2)2+y2=4有公共点是真命题,

则圆心(2,0)到直线mx﹣y+1=0的距离不大于半径,

解得:

∴命题p真时,

命题p假时,

命题q:实数m满足方程 + =1表示双曲线是真命题,

则(m﹣1)(2﹣m)<0,解得m<1或m>2.

命题q假时,1≤m≤2.

若“p∧q”为真命题,则p真q真,∴ ,解得m≤

∴实数m的取值范围为:(﹣∞, ];


(2)解:若“p∧q”为假命题,“p∨q”为真命题,则p、q一真一假,

当p真q假时,则 ,不存在满足条件的m值.

当p假q真时,则 ,解得

综上,实数m的取值范围为:( ,1).


【解析】求出p,q成立的等价条件,(Ⅰ)若“p∧q”为真命题,则p真q真,即可求实数m的取值范围;(Ⅱ)若“p∧q”为假命题,“p∨q”为真命题,则p、q一真一假,当p真q假时,求出m的取值范围,当p假q真时,求出m的取值范围,然后取并集即可得答案.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.

(1)∠MOP=∠OPN(O是坐标原点).

(2)∠MPN是直角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知正方体ABCDA1B1C1D1.

(1)求证:平面A1BD∥平面B1D1C.

(2)若EF分别是AA1CC1的中点,求证:平面EB1D1∥平面FBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1 (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ. (Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+2y+1=0l2-2x+y+2=0,它们相交于点A.

(1)判断直线l1l2是否垂直?请给出理由.

(2)求过点A且与直线l33x+y+4=0平行的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:

x(单位:千元)

2

4

7

17

30

y(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据 (yi i2=1.15) 参考公式:相关指数R2=1﹣
回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = = x,参考数据:ln40=3.688, =538.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型① 与模型;② 作为产卵数y和温度x的回归方程来建立两个变量之间的关系.

温度x/°C

20

22

24

26

28

30

32

产卵数y/个

6

10

21

24

64

113

322

t=x2

400

484

576

676

784

900

1024

z=lny

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 ,zi=lnyi
附:对于一组数据(μ1 , ν1),(μ2 , ν2),(μn , νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:

(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1 , C2 , C3 , C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为 .,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:

(1)PA⊥底面ABCD;

(2)平面BEF⊥平面PCD.

查看答案和解析>>

同步练习册答案