精英家教网 > 高中数学 > 题目详情

已知函数数学公式(常数a∈R+
(Ⅰ)判断f(x)的奇偶性并说明理由;
(Ⅱ)试研究函数f(x)在定义域内的单调性,并利用单调性的定义给出证明.

解:(1)定义域为:(-∞,0)∪(0,+∞)

∴f(x)是偶函数.
(2)f(x)=(a∈R+
10,则f(x)=,设
≤x1<x2?x12x22≥a2?且x22-x12>0,
?a 时,f(x1)<f(x2),
∴f(x)在上是增函数;
又f(x)是偶函数,f(x)在上是减函数.
时,时,
,1≤x1<x2时,

∴f(x)在上是减函数,
在[1,+∞)上是增函数;
又f(x)是偶函数,在上是增函数,
在(-∞,-1]上是减函数.
20,则f(x)=
,同理∴f(x)在上是减函数,
又f(x)是偶函数,于是f(x)在上是增函数.
由1020知:当0<a≤1时,f(x)在(0,1]上是减函数,
在[1,+∞)上是增函数,在(-∞,-1]上是减函数,在[-1,0)上是增函数;
当a>1时,f(x)在上是减函数,在上是增函数,
上是减函数,在上是增函数.
分析:(Ⅰ)首先要考虑函数的定义域,然后利用函数奇偶性的定义即可获得问题的解答;
(Ⅱ)首先将绝对值函数转化为分段函数,然后分类讨论不同段上的函数单调性即可,讨论时用定义法即可.
点评:本题考查的是函数奇偶性与单调性判断与证明的问题.在解答的过程当中充分体现了函数奇偶性和单调性的定义、分类讨论的思想以及问题转化的能力.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式,常数a∈R).
(1)当a=2时,解不等式f(x)-f(x-1)>2x-1;
(2)讨论函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省徐州市高三(上)10月调研数学试卷(解析版) 题型:填空题

已知函数,常数a∈R),若函数f(x)在x∈[2,+∞)上是增函数,则a的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2008年广东省广州市执信中学高三联考数学试卷(文科)(解析版) 题型:解答题

已知函数,常数a∈R).
(1)当a=2时,解不等式f(x)-f(x-1)>2x-1;
(2)讨论函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省宿迁市泗阳中学高三第一次调研数学试卷(普通班)(解析版) 题型:解答题

已知函数,常数a∈R).
(1)当a=2时,解不等式f(x)-f(x-1)>2x-1;
(2)讨论函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年上海市高考数学试卷(文科)(解析版) 题型:解答题

已知函数,常数a∈R).
(1)当a=2时,解不等式f(x)-f(x-1)>2x-1;
(2)讨论函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案