【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);
(2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;
合计 | |||
认可 | |||
不认可 | |||
合计 |
(3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
(参考公式:)
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).
(1)求双曲线C的方程;
(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,为梯形,,,,,,.
(1)在线段上有一个动点,满足且平面,求实数的值;
(2)已知与的交点为,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,,点、分别在线段、上,且,,现将沿折到的位置,连结,,如图2
(1)证明:;
(2)记平面与平面的交线为.若二面角为,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的离心率为,分别是椭圆的左右焦点,点是椭圆上任意一点,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线上是否存在点Q,使以为直径的圆经过坐标原点O,若存在,求出线段的长的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com