精英家教网 > 高中数学 > 题目详情

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);

2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;

合计

认可

不认可

合计

3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?

(参考公式:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

【答案】1城市评分的平均值小于城市评分的平均值;(2)没有;(3

【解析】

1)观察茎叶图即可求解.

2)由茎叶图列出列联表,根据独立性检验的思想对照临界值即可求解.

3)利用条件概率的求法即可求解.

1城市评分的平均值小于城市评分的平均值;

2

合计

认可

5

10

15

不认可

15

10

25

合计

20

20

40

所以没有的把握认为城市拥堵与认可共享单车有关;

3)设事件:恰有一人认可;

事件:来自城市的人认可;

事件包含的基本事件数为

事件包含的基本事件数为

则所求的条件概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).

(1)求双曲线C的方程;

(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=8x的焦点,作倾斜角为45°的直线,则被抛物线截得的弦长为(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,,且平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,为梯形,.

(1)在线段上有一个动点,满足平面,求实数的值;

(2)已知的交点为,若,且平面,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,,点分别在线段上,且,现将沿折到的位置,连结,如图2

1)证明:

2)记平面与平面的交线为.若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,分别是椭圆的左右焦点,点是椭圆上任意一点,且.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)在直线上是否存在点Q,使以为直径的圆经过坐标原点O,若存在,求出线段的长的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数上单调递减,且,则的值(  )

A. 恒为正B. 恒为负C. 恒为0D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知U=RA={x|a2x2-5ax-6<0}B{x||x-2|≥1}.

1)若a=1,求(UAB

2)求不等式a2x2-5ax-6<0aR)的解集.

查看答案和解析>>

同步练习册答案