精英家教网 > 高中数学 > 题目详情
已知函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)<f(x+2)的解集为(  )
A、{x|x<3}
B、{x|
1
2
<x<3}
C、{x|-
1
3
<x<3}
D、{x|
1
3
<x<3}
分析:由于函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,所以函数f(x)应该在[1,+∞)上单调递增,利用函数的单调性即可求出不等式f(2x-1)<f(x+2)的解集.
解答:解:因为函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,
又由于又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,
所以不等式f(2x-1)<f(x+2)?f(|2x-1-1|)<f(|x+2-1|),
所以|2x-2|<|x+1|?3x2-10x+3<0,解得
1
3
<x<3

所以所求不等式的解集为:{x|
1
3
<x<3
}
故选:D
点评:此题考查了函数的平移,函数的奇偶性与单调性的联合使用求解抽象函数的不等式,还考查了含绝对值的不等式的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案