精英家教网 > 高中数学 > 题目详情

【题目】玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”和“三步上篮”的命中率均为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.

(1)求小华同学两项测试均合格的概率;

(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.

【答案】(1); (2)见解析.

【解析】

(1)先求小华同学“立定投篮”与“三步上篮”合格的概率,再根据乘法公式求结果,(2)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据数学期望公式得期望.

(1)小华同学“立定投篮”与“三步上篮”合格的概率均为

则小华同学两项测试均合格的概率为

(2)由题意,随机变量X所有可能取值为2,3,4,

其分布列为

X

2

3

4

数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分形几何学是美籍法国数学家伯努瓦..曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数(其中).

(1)当时,求不等式的解集;

(2)若关于的不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

2)现在公司准备投入亿元资金同时生产两种芯片,求可以获得的最大利润是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.

(1)求样本容量和抽取的高中生近视人数分别是多少?

(2)在抽取的名高中生中,平均每天学习时间超过9小时的人数为,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:

平均学习时间不超过9小时

平均学习时间超过9小时

总计

不近视

近视

总计

(3)根据(2)中的列联表,判断是否有的把握认为高中生平均每天学习时间与近视有关?

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的焦点分别为,离心率,过左焦点的直线与椭圆交于两点,,且.

(1)求椭圆的标准方程;

(2)过点的直线与椭圆有两个不同的交点,且点在点之间,试求面积之比的取值范围(其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知直线2xy﹣1=0与直线x﹣2y+1=0交于点P

求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)

求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中,分别在上,,现将四边形沿折起,使平面平面.

(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;

(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对一块长米,宽米的矩形场地ABCD进行改造,点E为线段BC的中点,点F在线段CDAD上(异于AC),设(单位:米),的面积记为(单位:平方米),其余部分面积记为(单位:平方米).

1)求函数的解析式;

2)设该场地中部分的改造费用为(单位:万元),其余部分的改造费用为(单位:万元),记总的改造费用为W单位:万元),求W最小值,并求取最小值时x的值.

查看答案和解析>>

同步练习册答案