【题目】狄利克雷函数是高等数学中的一个典型函数,若,则称为狄利克雷函数.对于狄利克雷函数,给出下面4个命题:①对任意,都有;②对任意,都有;③对任意,都有, ;④对任意,都有.其中所有真命题的序号是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
【答案】D
【解析】①当x∈Q,则f(x)=1,f(1)=1,则[f(x)]=1,当x为无理数时,则f(x)=0,f(0)=1,则[f(x)]=1,即对任意x∈R,都有f[f(x)]=1,故①正确,②当x∈Q,则-x∈Q,则f(-x)=1,f(x)=1,此时f(-x)=f(x),当x为无理数时,则-x是无理数,则f(-x)=0,f(x)=0,此时f(-x)=f(x),即恒有f(-x)=f(x),即函数f(x)是偶函数,故②错误,③当是无理数时, 是无理数,所以,当是有理数时, 是有理数,所以,故③正确,④∵f(x)≥0恒成立,∴对任意a,b∈(-∞,0),都有 ,故④正确,故正确的命题是①③④,故选D.
科目:高中数学 来源: 题型:
【题目】经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2 没有击中,用3,4,5,6,7,8,9 表示击中,以 4个随机数为一组, 代表射击4次的结果,经随机模拟产生了20组随机数:
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个人有n把钥匙,其中只有一把可以打开房门,他随意的进行试开,若试开过的钥匙放在一边,试开次数X为随机变量,则P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=AD=2,BC=1,CD= .
(1)求证:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com