【题目】已知函数,.
(1)当时,
①求函数在点处的切线方程;
②比较与的大小;
(2)当时,若对时,,且有唯一零点,证明:.
【答案】(1)①见解析,②见解析;(2)见解析
【解析】
(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;
②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.
(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.
解:(1)①当时,,,,
又,切线方程为,即;
②令,
则,
在上单调递减.
又,
当时,,即;
当时,,即;
当时,,即.
证明:(2)由题意,,
而,
令,解得.
,,
在上有唯一零点.
当时,,在上单调递减,
当,时,,在,上单调递增.
.
在恒成立,且有唯一解,
,即,
消去,得,
即.
令,则,
在上恒成立,
在上单调递减,
又, ,
.
在上单调递增,
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为(是参数)以原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求圆的普通方程和的直线直角坐标方程;
(2)设直线与轴交点分别是,点是圆上的动点,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第七届世界军人运动会(以下简称武汉军运会)专题新闻发布会在武汉举行,武汉军运会会徽、吉祥物正式公布.武汉军运会将于年月日举行,赛期天.若将名志愿者分配到两个运动场馆进行服务,每个运动场馆至少名志愿者,则其中志愿者甲、乙或甲、丙被分到同一场馆的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为“资深用户”.
(1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为“资深用户”与性别有关;
“资深用户” | 非“资深用户” | 总计 | |
男性 | |||
女性 | |||
总计 |
(2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中“资深用户”的人数为X,求随机变量X的分布列与数学期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若满足,则称函数为“型函数”.
(1)判断函数和是否为“型函数”,并说明理由;
(2)设函数,记为函数的导函数.
①若函数的最小值为1,求的值;
②若函数为“型函数”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号
A. 522B. 324C. 535D. 578
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com