精英家教网 > 高中数学 > 题目详情

【题目】已知四边形为矩形, ,的中点,沿折起,得到四棱锥,的中点为,在翻折过程中,得到如下有三个命题:

平面,且的长度为定值

三棱锥的最大体积为

③在翻折过程中,存在某个位置,使得.

其中正确命题的序号为__________.(写出所有正确结论的序号)

【答案】①②

【解析】

的中点,连接,证明四边形为平行四边形,得出,可判断出命题①的正误;由的中点,可知三棱锥的体积为三棱锥

的一半,并由平面平面,得出三棱锥体积的最大值,可判断出命题②的正误;取的中点,连接,由,结合得出平面,推出得出矛盾,可判断出命题③的正误.

如下图所示:

对于命题①,取的中点,连接,则

,由勾股定理得

易知,且分别为的中点,所以,

四边形为平行四边形,

平面平面平面,命题①正确;

对于命题②,由的中点,可知三棱锥的体积为三棱锥的一半,当平面平面时,三棱锥体积取最大值,

的中点,则,且

平面平面,平面平面

平面平面

的面积为

所以,三棱锥的体积的最大值为

则三棱锥的体积的最大值为,命题②正确;

对于命题③,的中点,所以,

,且平面

由于平面,事实上,易得

,由勾股定理可得,这与矛盾,命题③错误.

故答案为:①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为P是曲线上的动点,M为线段OP的中点,设点M的轨迹为曲线

1)求的极坐标方程;

2)若射线与曲线异于极点的交点为A,与曲线异于极点的交点为B,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)求函数的单调区间;

)若对任意的,都有成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,的中点,平面的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商品价格与商品需求量是经济学中的一种基本关系,某服装公司需对新上市的一款服装制定合理的价格,需要了解服装的单价x(单位:元)与月销量y(单位:件)和月利润z(单位:元)的影响,对试销10个月的价格和月销售量)数据作了初步处理,得到如图所示的散点图及一些统计量的值.

x

y

61

0.018

372

2670

26

0.0004

表中.

1)根据散点图判断,哪一个适宜作为需求量y关于价格x的回归方程类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

3)已知这批服装的成本为每件10元,根据(1)的结果回答下列问题;

i)预测当服装价格时,月销售量的预报值是多少?

span>ii)当服装价格x为何值时,月利润的预报值最大?(参考数据

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为的正三角形,,且分别是中点,则异面直线所成角的余弦值为__________

查看答案和解析>>

同步练习册答案