精英家教网 > 高中数学 > 题目详情

已知三次函数

(1)若函数过点且在点处的切线方程是,求函数的解析式;

(2)在(1)的条件下,若对于区间上任意两个自变量的值,都有,求实数的最小值。

 

【答案】

解:(1),故

(2)t的最小值是20

【解析】由在点处的切线方程是可得出,k==0;

列式求解;恒成立,则即最高点与最低点纵标差即可,转化为求函数在上的问题

解:(1)函数过点------------1分

,函数在点处的切线方程是-----------------------3分

解得,故--------------------5分

(2)由(1)知,令解得,-------------6分

在区间,-----------------8分

对于区间上任意两个自变量的值

都有,---------------------9分

,所以t的最小值是20

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+ax2-6x+b,a、b为实数,f(0)=1,曲线y=f(x)在点(1,f(1))处切线的斜率为-6.
(1)求函数f(x)的解析式;
(2)若f(x)≤|2m-1|对任意的x∈(-2,2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3-5x2+cx+d(a≠0)图象上点(1,8)处的切线经过点(3,0),并且f(x)在x=3处有极值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若当x∈(0,m)时,f(x)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对?x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b为实常数.
(1)若a=3,b=3时,求函数f(x)的极大、极小值;
(2)设函数g(x)=f′(x)+7,其中f′(x)是f(x)的导函数,若g(x)的导函数为g′(x),g′(0)>0,g(x)与x轴有且仅有一个公共点,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

同步练习册答案