精英家教网 > 高中数学 > 题目详情
2.化简求值
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$         
(2)(log43-log83)(log32+log92)

分析 (1)利用根式、分数指数幂互化公式和有理数指数幂性质、运算法则求解.
(2)利用对数性质、运算法则、换底公式求解.

解答 解:(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
=$2×{3}^{\frac{1}{2}}×\frac{{3}^{\frac{1}{3}}}{{2}^{\frac{1}{3}}}×{3}^{\frac{1}{6}}×{2}^{\frac{1}{3}}$
=${2}^{1-\frac{1}{3}+\frac{1}{3}}$×${3}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}$
=2×3
=6.
(2)(log43-log83)(log32+log92)
=(log6427-log649)(log94+log92)
=log643•log98
=$\frac{lg3}{lg64}•\frac{lg8}{lg9}$
=$\frac{1}{4}$.

点评 本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则和换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设△ABC的三边长分别为a,b,c,已知a=3,b=$\sqrt{3}$,B=30°.
(1)求A;                 
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点,给出下列四个命题:
①若PA⊥平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;
③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为$\frac{125\sqrt{2}π}{3}$;
其中正确命题是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn是等比数列{an}的前n项和,若$\frac{{{S_{504}}}}{{{S_{1008}}}}$=$\frac{1}{10}$,则$\frac{{{S_{1008}}}}{{{S_{2016}}}}$=(  )
A.$\frac{1}{26}$B.$\frac{1}{82}$C.$\frac{2}{5}$D.$\frac{10}{729}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:
感染未感染总计
服用104050
未服用203050
总计3070100
附表:
P(K2≥k)0.100.050.025
k2.763.8415.024
参照附表,下列结论正确的是(  )
A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”
B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”
C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”
D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知表是某班学生的一次数学考试成绩的分布表:
分数段[0,90)[90,100)[100,110)[110,120)[120,130)[130,150]
人数88101266
那么,分数在区间[100,110)内的频率和分数不满110分的频率分别是(  )
A.0.44,0.52B.0.44,1C.0.20,0.48D.0.20,0.52

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},若max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值.记H1(x)的最小值为A,H2(x)的最大值为B,则B-A=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某省就所制订的《中长期教育改革和发展规划纲要》(意见稿)向社会公开征求意见,为确保搜集的意见广泛有效,派出了面向不同层次的三个工作组A、B、C,分别有组员36人、36人、18人.现采用分层抽样的方法从A、B、C三个工作组中抽取共5名代表,在工作总结会上发言.
(1)求从三个工作组中分别抽取的人数;
(2)若从抽取的5名代表中再随机抽取2名参与意见稿的修改工作,求这两名上没有A组人员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1内有一点P(1,1).
(1)求经过P并且以P为中点的弦所在直线方程;
(2)如果直线l:x=my+4与椭圆E相交于A、B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

同步练习册答案