精英家教网 > 高中数学 > 题目详情
18.函数$f(x)=\sqrt{x+1}+{(2-x)^0}$的定义域为{x|x≥-1,且x≠2}.

分析 由根式内部的代数式大于等于0,0指数幂的底数不等于0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{x+1≥0}\\{2-x≠0}\end{array}\right.$,解得:x≥-1,且x≠2.
∴函数$f(x)=\sqrt{x+1}+{(2-x)^0}$的定义域为{x|x≥-1,且x≠2}.
故答案为:{x|x≥-1,且x≠2}.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2cos2$\frac{ωx}{2}$+cos(ωx+$\frac{π}{3}$),(其中ω>0)的最小正周期为π,在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-$\frac{1}{2}$,c=3,△ABC的面积为6$\sqrt{3}$,则△ABC的外接圆面积为(  )
A.45πB.49πC.D.$\frac{49π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在正方体ABCD-A′B′C′D′中,异面直线AC与BC′所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lg$\frac{2x}{ax+b}$,f(1)=0,当x>0时,恒有f(x)-f($\frac{1}{x}$)=lgx.
(1)求f(x)的表达式及定义域;
(2)若方程f(x)=lgt有解,求实数t的取值范围;
(3)若方程f(x)=lg(8x+m)的解集为∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知在等差数列{an}中,a1=-1,公差d=2,an=15,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天41036
市场价y元905190
已知辽宁号航母纪念章的市场价y与上市时间x的变化关系是f(x)=ax2+bx+c.
(1)求辽宁号航母纪念章市场价最低时的上市天数及最低的价格;
(2)若对任意实数k,关于x的方程f(x)=kx+2m+120在实数集上恒有两个相异的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大学毕业生响应国家“自主创业”的号召,今年年初组织一些同学自筹资金196万元购进一台设备,并立即投入生产自行设计的产品,计划第一年维修、保养费用24万元,从第二年开始,每年所需维修、保养费用比上一年增加8万元,该设备使用后,每年的总收入为100万元,设从今年起使用n年后该设备的盈利额为f(n)万元.
(Ⅰ)写出f(n)的表达式;
(Ⅱ)求从第几年开始,该设备开始盈利;
(Ⅲ)使用若干年后,对该设备的处理方案有两种:方案一:年平均盈利额达到最大值时,以52万元价格处理该设备;方案二:当盈利额达到最大值时,以16万元价格处理该设备.问用哪种方案处理较为合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合{x|mx2+mx+1<0,x∈R}=∅,则实数m的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若双曲线右支上存在一点($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)与点F1关于直线y=-$\frac{bx}{a}$对称,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案